Licence SCIENCE ET INGENIERIE mention "SPI"

Année 2020-2021 - L1

DS de EC231 - Thermodynamique 28 mai 2020. Durée 1h30

QCM

A. Une transformat	ion isochore e	est une transfor	mation qui se	e fait (à)	:	
1. □ pression co <u>ns</u> t	ante 2. \square	intervalle de ter	mps régulier	3.□	sans éc	change
d'énergie 4.	volume consta	nt	5.□ autre			
B. Une transformat	ion adiabatiq	ue est une tran	sformation qu	ui se <u>fa</u> it	(à):	
1. □ température co	onstante 2. □	intervalle de 1	temps régulier	3. s	sans échai	nge de
chaleur 4. □ volume	e constant	5. □ autre				
C. Un système ferm	é échange :					
1. □ du travail uniqu	iement 2.	de la chaleur un	iquement	3. □ d€	la matièr	e
4. □ du travail et de	la chaleur	5. □ aucun éc	hange possibl	e.		
D. Un système isolé	échange :					
1. □ du travail uniqu			-		e la matiè	re
4. □ du travail et de	la chaleur	5. aucun é	change possib	le.		
E. Une fonction d'é			-			
1. son intégration	dépend du che	emin 2.□ so	n intégration i	ne dépen	d pas du c	hemin
3. □ c'est une différ	rentielle inexac	cte	4.□ ce n'es	t pas ui	ne différe	entielle
exacte 5. □	aucune répons	e valable.				
Exercice 1						
On donne la cons International)	stante unive	erselle : R=8	.314 SI (S	SI : Syst	ème	
1. Quelle est	l'unité de	R?				

Unite de R : La joule par kelvin mole J/ (K.mol)

2. Calculer numeriquement la valeur du volume molaire (
$$V_{M} = \frac{V}{n}$$
) d'un gaz parfait à une pression de 1 bar et une température de $0^{0}C$

$$V_{M} = \frac{RT}{P} i = 0,023 \quad m^2 \text{ /mol}$$

3. Calculer les coefficients thermoelastiques ($^{\alpha, \beta, \chi_T}$) d'un gaz parfait pour les valeurs suivantes:

	unites	$T = 0^{\circ}C$	$T = 20^{\circ} C$	P = 1 bar
$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P}$	K	0,00366	0,000341	p*x*b=a
$\beta = \frac{1}{P} \left(\frac{\partial P}{\partial T} \right)_{V}$	K	0,00366	0,000341	p*x*b=a
$\chi_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$	Pa	p*x*b=a	p*x*b=a	1

Exercice 2

1. Un pneu sans chambre, de volume supposé constant, est gonflé à froid, à la température T1 = 20 °C, sous la pression P1 = 2,1 bar. Après avoir roulé un certain temps, le pneu affiche une pression P2 = 2,3 bar; quelle est alors sa température ?

$$T2 = 47^{\circ}C$$

2. Une bouteille d'acier, munie d'un détendeur, contient dans un volume Vi = 60 L , de l'air comprimé sous Pi = 15 bar . En ouvrant le détendeur à la pression atmosphérique, quel volume d'air peut-on extraire à température constante ?

On donne
$$\chi_T = 98.7 \ 10^{-7} \ S.I$$
.

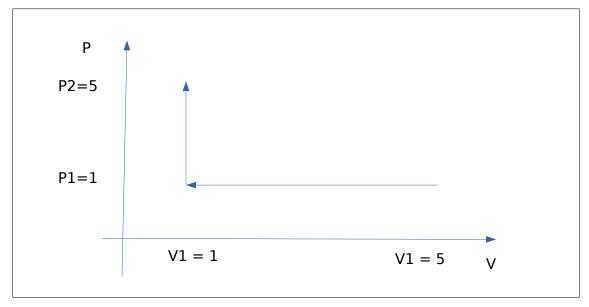
$$V_f - V_i = -V Xt (Pi - P0) = -82908 * 10^{-7} L$$

- 3. Un pneu de volume V1 = 50 L contenant n1 moles, est gonflé au moyen d'air comprimé contenu dans une bouteille de volume V0 = 80 L sous P0 = 15 bar avec n0 moles. Si la pression initiale dans le pneu est nulle et la pression finale P1 = 2,6 bar et nombre de moles n1 :
- déterminer la pression P dans la bouteille à la fin du gonflage d'un pneu sachant que la quantité de matière transférée est n0n1?

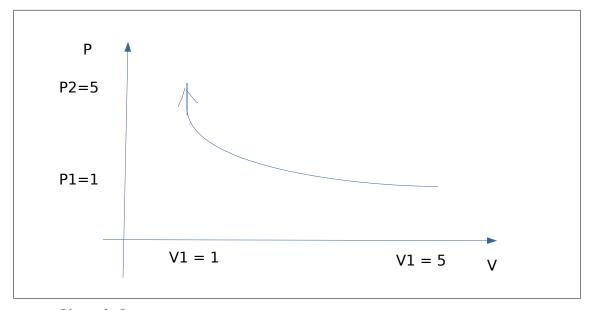
PV = nRT

V = n RT / P

Exercice 3


On effectue de trois façons différentes, une compression réversible qui amène une mole

de gaz d'azote (N2) supposé gaz parfait, de l'état 1 (p1 = 1 bar et V1 = 5L) à l'état 2


(p2 = 5 bar et V2=1 L). On donne R=8.31 SI.

- Chemin 1 : une transformation isochore puis une transformation isobare.
- Chemin 2 : une transformation isotherme.
- 1) Représenter graphiquement ces deux chemins sur un même diagramme de Clapeyron.

Une transformation isochore est sans changement de volume

Chemin 1

Chemin2

2) Calculer le travail reçu suivant chaque chemin.

Chemin 2
$$W = -\int P \, dV$$

chemin 1

W = -P0.V0 In (
$$\frac{P0}{P1}$$
) - P1.V1 In($\frac{V1}{V2}$)